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Abstract. Process discovery studies algorithms that, given an event log of a sys-
tem captured as a collection of recorded sequences of actions executed by the sys-
tem, construct process models that describe the system. A process discovery prob-
lem is a multi-objective optimization problem that aims to simultaneously opti-
mize the simplicity of the constructed models and their quality, ensuring models
accurately represent both the input event log and the underlying system. Multi-
objective metaheuristics provide effective strategies for navigating these trade-
offs, offering practical approaches to exploring Pareto-optimal solutions. Recent
research has demonstrated that genetic strategies based on grammatical inference
can produce superior models compared to state-of-the-art discovery algorithms.
In this paper, we conduct a comprehensive evaluation of existing multi-objective
metaheuristics for process discovery using grammatical inference, refining them
where necessary to enhance efficiency and control the number of the discovered
Pareto-optimal models. This evaluation, based on multiple real-life event logs
and our open-source implementation of various metaheuristic algorithms, con-
firms the feasibility of efficiently discovering significantly better models. Specif-
ically, the Differential Evolution-based optimization approach, which we refer to
as ADESPD, consistently produces high-quality models with diverse character-
istics within practical time constraints, which are deterministic and sound.
Keywords: Stochastic process discovery, directly-follows graphs, metaheuristics

1 Introduction

Process discovery is a core problem in process mining that focuses on constructing pro-
cess models from event logs recorded by an information system. These models aim to
accurately and concisely represent the business process that generated the event log [5].
An event log consists of multiple traces, where each trace is a sequence of actions ex-
ecuted in a specific case, or instance, of the business process. The discovered models
help in understanding the current process and provide a ground for its improvement.

Numerous process discovery algorithms have been proposed [2]. These algorithms
construct process models using various modeling languages, such as Directly-Follows
Graphs (DFGs), Petri nets, and Business Process Model and Notation. DFGs are widely
used in commercial tools due to their intuitive interpretation and efficient construc-
tion [3, 25]. In a DFG, nodes represent actions, and edges indicate that the target ac-
tion can directly follow the source action in some execution of the process. Nodes and
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edges are annotated with numerical values that reflect, respectively, the frequency of
corresponding actions and subsequent, non-interrupted by other actions, occurrences
of actions in the traces of the input event log. A DFG has two special nodes: an input
node, which has no incoming edges, and an output node, which has no outgoing edges.
A sequence of actions on a walk from the input node to the output node represents a
possible execution (a trace) of the process [21]. Figures 2(a) and 2(c) show two DFGs.

We demonstrated that process discovery based on the genetic optimization of the
Alergia grammatical inference algorithm—called GASPD—can construct interesting
process models in terms of size and accuracy of reflecting the likelihood of traces gen-
erated by the system. Moreover, we showed that models allowing multiple nodes to
represent the same action can outperform those restricting each action to a single node.
As DFGs are grounded in the “can follow” relation over actions in the event log, that
is, pairs of actions that can appear one after another in some trace of the event log, in
a DFG, each action is represented by exactly one node; the pairs of actions specify the
edges in the DFGs. To distinguish from DFGs, graphs that allow multiple nodes to re-
fer to the same action are called Stochastic Directed Action Graphs (SDAGs). Unlike
DFGs, SDAG edges are annotated with probabilities rather than frequencies, indicating
the likelihood of performing the target action after completing the source action. Given
the total number of traces, these edge annotations are sufficient to reconstruct the ob-
served traces and the corresponding action counts from which the probabilities were
estimated [6]. Figure 2(b) shows an example SDAG.

Due to its genetic nature, GASPD has significant runtime requirements. Moreover,
the interesting models discovered by GASPD tend to be confined to a limited range of
model sizes [6]. In this paper, we conduct a comprehensive review of multi-objective
metaheuristics to identify those that efficiently support the discovery of models—based
on the Alergia grammatical inference algorithm—that are simple (in terms of size), ac-
curate (in terms of entropic relevance), and diverse. Entropic relevance is chosen as
the accuracy measure because it assesses how well a model reflects the likelihood of
target traces, balances precision and recall, and is computationally efficient, that is, is
computable in time linear to the size of the input event log [7]. To ensure the discov-
ered models exhibit a wide range of quality characteristics, we incorporate a niching
technique, which allows metaheuristics to explore multiple promising search subspaces
simultaneously, reducing the risk of premature convergence to local optima [14, 26].

Specifically, this paper makes the following contributions:

– A classification of multi-objective metaheuristics suitable for process discovery using
the Alergia grammatical inference algorithm, based on their strategies for selecting
candidate solutions.

– Integration of a niching technique to maintain solution diversity within the proposed
classes of multi-objective optimization algorithms; for some classes—and conse-
quently, some metaheuristics—this niching technique is applied for the first time.

– An empirical evaluation using industrial event logs, demonstrating that Differential
Evolution-based optimization of Alergia grammatical inference discovers smaller,
more accurate models with diverse quality characteristics, outperforming existing
methods within practical time limits; we refer to this methodology as Alergia and
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Differential Evolution for Stochastic Process Discovery (ADESPD). In addition, all
the models discovered by ADESPD are deterministic and sound by construction.

The next section presents a motivating example and highlights the challenges of pro-
cess discovery. Section 3 introduces fundamental concepts essential for understanding
the subsequent discussions. Section 4 reviews existing metaheuristics, proposes their
taxonomy, and discusses integration of niching. Section 5 details the evaluation setup
and analyzes the results. Finally, Section 7 presents concluding remarks.

2 Motivating Example

Figures 2(a) and 2(c) show two DFGs discovered using Directly Follows visual Miner
(DFvM) [21] from the Sepsis Cases event log1, each generated with a different trace
filtering threshold. In these DFGs, nodes labeled “▶” represent inputs and nodes labeled
“∎” represent outputs. Both DFGs describe, among other walks, a path that starts at the
input node, proceeds to node A, then visits node B, and subsequently traverses node F
before reaching the output node. This corresponds to the trace ABF, which represents
an execution that begins with action A, continues with B, and concludes with action F.

In the DFG in Fig. 2(a), for instance, the edge from the input node to node A is
annotated with a frequency of 1,050, indicating that all the 1,050 traces this DFG de-
scribes begin with action A. The edges from A to B and from B to F indicate that 1,050
occurrences of action A are followed by occurrences of action B and 1,050 occurrences
of action B are followed by occurrences of action F. Finally, 454 occurrences of action F
are not followed by any actions, refer to the edge from node F to the output node, while
the remaining 596 occurrences of action F are followed by occurrences of D or E. Note
that node frequencies are not annotated, as they can be trivially derived by summing the
frequencies of all incoming or outgoing edges.
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Fig. 1. Pareto optimal models
discovered from the Sepsis
Cases event log.

Figure 2(b) presents an SDAG discovered from the
same Sepsis Cases event log using ADESPD, the ap-
proach introduced in this paper. The input and output
nodes of the SDAG share the same annotations as those
of the DFGs. The edge frequencies in the SDAG are de-
rived from the annotated probabilities based on a total
of 1,050 traces. We use 1,050 as the target frequency to
account for all traces in the input event log. Notably, we
do not specify node frequencies, as again, they can be
trivially inferred from the edge frequencies. The SDAG
indicates that the probability of the trace ABF is the
product of probabilities along the corresponding path:
1.0× 1.0× 1.0× 0.43 = 0.43. A DFG can be interpreted
as an SDAG by estimating edge probabilities based on
frequencies, where probability of an edge is equal to
the ratio of its frequency to the sum of frequencies of all outgoing edges from the same
source node. The inverse is not necessarily true.

1 https://doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460
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Fig. 2. Two DFGs (a) and (c) and SDAG (b) discovered from the Sepsis Cases event log; node la-
bels represent the following actions: A = “ER Registration”, B = “ER Triage”, C = “LacticAcid”,
D = “Leucocytes”, E = “CRP”, F = “ER Sepsis Triage”, G = “IV Liquid”, H = “IV Antibiotics”,
I = “Admission NC”, J = “Release A”, and K = “Return ER”.

The DFG in Fig. 2(a) and the SDAG in Fig. 2(b) are similar in size; 17 and 19,
respectively. The SDAG exhibits better entropic relevance of 51.9, compared to 62.4 for
the DFG; a lower entropic relevance value indicates a more faithful representation of
the relevant traces and their likelihood. Both models belong to the set of Pareto-optimal
solutions discovered by DFvM and ADESPD. The Pareto-optimal model discovered by
DFvM with entropic relevance compared to the SDAG has a significantly larger size of
60 and is shown in Fig. 2(c). These three models are highlighted with circles in Fig. 1,
where they are presented alongside other optimal models of practical sizes identified by
the two techniques. To obtain the optimal DFvM models, we generated 100 DFGs by
varying the trace filtering threshold from zero to one in increments of 0.01.
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3 Preliminaries

This section introduces basic concepts used in this paper. An SDAG represents a col-
lection of traces along with their likelihood of occurrence during model execution.

Definition 3.1 (SDAGs [6]) A stochastic directed action graph (SDAG) is a tuple
(N, Λ, β, γ, q,▶, ∎), where N is a finite set of nodes, Λ is a finite set of actions,
β ∶ N → Λ is a labeling function, γ ⊆ (N × N) ∪ ({▶} × N) ∪ (N × {∎}) is the flow
relation, q ∶ γ → [0,1] is a flow probability function,▶ /∈ N is the input node, and ∎ /∈ N
is the output node, such that ∀n ∈ N ∪ {▶} ∶ (∑m∈{k∈N∪{∎} ∣ (n, k)∈γ} q(n,m) = 1). ⌟

An execution of an SDAG is a finite sequence of its nodes, beginning with▶ and ending
with ∎, such that for every pair of consecutive nodes u and v in the sequence, it holds
that (u, v) ∈ γ For example, the sequence ⟨▶, A, B, F, D, E, ∎⟩ is an execution of the
SDAG shown in Fig. 2(b). A trace of an SDAG is a sequence of actions such that there
exists an execution that confirms the trace, i.e., the execution visits nodes (excluding▶
and ∎) in the same order as they appear in the trace. For instance, the sequence ⟨A, B,
F, D, E⟩ (or ABFDE, for short) is a trace confirmed by the example execution above.
The probability of observing a trace corresponds to the product of the probabilities on
the edges traversed by the confirming execution. According to the SDAG in Fig. 2(b),
the probability of observing the trace ABFDE is 0.3

An SDAG is sound if every of its node is on a directed walk from the input node to
the output node. It is deterministic if, for each node, the outgoing edges lead to distinct
actions. Every trace of a deterministic SDAG is confirmed by exactly one execution.

Definition 3.2 (Deterministic SDAGs [6]) An SDAG (N, Λ, β, γ, q,▶, ∎) is determin-
istic if and only if for every pair of edges originating from the same node and leading
to distinct target nodes it holds that the labels of those target nodes are different; that is:
∀n ∈ N ∪{▶} ∀n1,n2 ∈ N ∶ (((n, n1) ∈ γ ∧ (n, n2) ∈ γ∧n1 ≠ n2)⇒ β(n1) ≠ β(n2)). ⌟

Entropic relevance[7] applies the minimum description length principle to quantify the
number of bits required to encode a trace from an event log using a process model that
specifies the likelihood of traces, such as an SDAG. Models yielding lower entropic
relevance values for a given event log are preferred, as they represent the traces and their
likelihoods more effectively. Entropic relevance incorporates a background encoding
mechanism to account for traces in the event log that are not captured by the model.
In this work, we adopt the zero-order background coding mechanism, which strikes a
balance between a strict and lenient punishment of non-modeled traces [7].

GASPD is a genetic algorithm for constructing SDAGs from an event log [6]. It
evolves an initial population of randomly generated models through iterative selection,
crossover, and mutation operations. Selection favors models that achieve a good bal-
ance between structural simplicity and quality in terms of entropic relevance. Each
model is characterized by three parameters: a filtering threshold that specifies the pro-
portion of frequent traces retained from the event log, and two parameters associated
with the Alergia [13] stochastic grammar inference algorithm. Alergia learns a proba-
bilistic grammar from the filtered traces, which is then translated into an SDAG. The
translation process guarantees that the resulting SDAG is both deterministic and sound.
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4 Stochastic Process Discovery as Multi-Objective Optimization

A multi-objective optimization problem is defined as follows: Let f ∶ Rn → Rm be
a vector-valued objective function, where f (x) = ( f1(x), f2(x), . . . , fm(x)) and each
fi ∶ Rn → R, i ∈ [1 ..m], represents an objective to be minimized. The goal is to find a
solution X∗ ∈ Rn such that: (i) X∗ is feasible, meaning it satisfies all the constraints of
the problem, and (ii) X∗ is Pareto optimal, meaning there is no other feasible solution
y ∈ Rn such that fi(y) ≤ fi(X∗) for all i ∈ [1 ..m], and f j(y) < f j(X∗) for at least one
j ∈ [1 ..m]. Thus, X∗ is a feasible solution for which no other feasible solution improves
at least one objective without worsening at least one other objective.

To construct SDAGs, GASPD formulates and solves a multi-objective optimization
problem that seeks parameter triplets—comprising the event log filtering threshold and
two Alergia parameters—that yield Pareto optimal models with respect to size and en-
tropic relevance. GASPD employs a genetic strategy to explore the space of parameter
configurations, where each triplet induces an SDAG. The goal is to identify configu-
rations that produce compact models that accurately reflect the behavior of the system
that generated the input event log. Given the demonstrated success of this approach [6],
it is worth exploring whether alternative metaheuristics could further improve the effec-
tiveness and efficiency of convergence toward high-quality SDAGs inferred using the
Alergia grammatical inference algorithm.

In Section 4.1, we review existing multi-objective metaheuristics. Then, in Sec-
tion 4.2, we propose a classification of these metaheuristics and integrate the resulting
classes with a niching technique to support the discovery of diverse models. We also
outline an algorithm for metaheuristic-driven SDAG discovery.

4.1 Metaheuristics

Metaheuristic algorithms are widely recognized for their effectiveness in solving com-
plex optimization problems across diverse domains. We examine nine prominent meta-
heuristic strategies [16], with particular emphasis on their solution update mechanisms
used to guide the search. Notably, comparative studies indicate that Differential Evo-
lution, Particle Swarm Optimization, Genetic Algorithms, and Symbiotic Organisms
Search consistently outperform other strategies in terms of success rate [16].

Particle Swarm Optimization (PSO) [20] PSO is inspired by the collective movement
observed in bird flocking and fish schooling. In PSO, individual particles traverse the
search space by updating their positions based on their personal best-known position
and the swarm’s global best-known position. The position update is defined as:

xi(t + 1) = xi(t) + vi(t + 1) , (1)

where xi(t) is the current position of particle i and vi(t + 1) is its velocity at the next
time step influenced by the personal best position pi and the global best position X∗:

vi(t + 1) = w ⋅ vi(t) + c1 ⋅ rand1() ⋅ (pi − xi(t)) + c2 ⋅ rand2() ⋅ (X∗ − xi(t)) . (2)
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Here, w is the inertia weight controlling momentum, c1 and c2 are acceleration coeffi-
cients, and rand1() and rand2() are random numbers in [0,1] responsible for stochastic-
ity that encourages exploration. This formulation balances exploration and exploitation,
enabling particles to search the solution space effectively.
Whale Optimization (WO) [23] WO simulates the hunting behavior of humpback
whales, specifically their bubble-net feeding strategy, through a spiral-based position
update mechanism. The algorithm balances exploration and exploitation by alternating
between two strategies: encircling the prey and spiral movement toward it. The position
update of search agent (representing a whale) i is defined as:

xi(t + 1) =
⎧⎪⎪⎨⎪⎪⎩

X∗ −A ⋅ ∣C ⋅X∗ − xi(t)∣ if p < 0.5
D ⋅ ebl ⋅ cos(2πl) +X∗ if p ≥ 0.5

, (3)

where X∗ denotes the best solution found so far, and p is a random number in [0,1] that
determines the movement strategy. The coefficient vectors A and C control the balance
between exploration and exploitation, while D is the distance between the current posi-
tion and the best solution. The constant b controls the spiral’s shape, and l is a random
number that introduces stochastic variation into the spiral motion.
Cuckoo Search (CS) [31] CS is inspired by the brood parasitism behavior of cuckoo
species. The algorithm employs Lévy flights to generate new candidate solutions, mim-
icking the unpredictable and long-range movements observed in nature. By combining
local exploitation and global exploration, CS effectively navigates the search space. The
position update of search agent (representing a cuckoo) i is defined as:

xi(t + 1) = xi(t) + α⊕ Lévy(λ), (4)

where α > 0 is a scaling factor that controls the step size, ⊕ denotes element-wise mul-
tiplication, and Lévy(λ) represents a Lévy flight—a random walk whose steps follow a
heavy-tailed distribution characterized by the exponent λ, which governs the magnitude
and frequency of jumps.
Genetic Algorithm (GA) [29] Genetic Algorithm (GA) is inspired by the principles of
natural selection and genetics. It evolves a population of candidate solutions by applying
three genetic operators: selection, crossover, and mutation. Through these operations,
GA iteratively improves solution quality across generations. The update of a solution
(individual) i at generation t + 1 can be expressed as:

xi(t + 1) = Crossover(xi(t),x j(t)) +Mutation(xi(t)) , (5)

where x j(t) is a selected mate from the current population, Crossover combines genetic
material from two parents to generate offspring, and Mutation introduces small random
changes to the input individual to maintain diversity and avoid premature convergence.
Differential Evolution (DE) [27] DE is a population-based optimization algorithm that
evolves candidate solutions through vector-based recombination. It uses differences be-
tween vectors to create variations in the population. This approach is particularly effec-
tive for continuous optimization problems. The mutation step in DE is defined as:

ui(t + 1) = xr1(t) + F ⋅ (xr2(t) − xr3(t)) , (6)
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where ui is the donor vector for individual i, xr1, xr2, and xr3 are distinct individuals
randomly selected from the current population (but not xi), and F is a scaling factor.
Firefly Algorithm (FA) [30] FA is inspired by the flashing behavior of fireflies. In FA,
each firefly represents a candidate solution, and the objective function value determines
its brightness. The algorithm assumes that fireflies are attracted to brighter individuals,
and this attraction decreases with distance due to light absorption. The position update
of search agent i (a firefly), when attracted to a brighter agent j, is defined as:

xi(t + 1) = xi(t) + β0 ⋅ e−γr
2
i j ⋅ (x j(t) − xi(t)) + α ⋅ (rand − 1

2) , (7)

where β0 is the attractiveness at zero distance, γ is the light absorption coefficient con-
trolling how attractiveness decreases with distance, ri j is the Euclidean distance be-
tween fireflies i and j, α is a randomization parameter, and rand is a random number
introducing stochasticity.
Gravitational Search Algorithm (GSA) [1] GSA is inspired by the law of gravity and
mass interactions. It simulates a system in which search agents are treated as objects
whose performance determines their masses. Heavier masses represent better solutions
and exert stronger attractive forces on others. The movement of agents is governed
by gravitational attraction, guiding the search toward optimal solutions. The position
update rule in GSA is defined as:

xi(t + 1) = xi(t) + vi(t + 1) , (8)

where the velocity is updated as vi(t + 1) = randi ⋅ vi(t) + ai(t), with randi being a
random number (fresh for each iteration), and ai(t) denoting the acceleration of object
i, computed based on the cumulative gravitational forces exerted by the other objects.
Ant Colony Optimization (ACO) [15] ACO is inspired by the foraging behavior of
ants, which communicate via pheromone trails to find efficient paths between their
colony and food sources. In ACO, artificial ants construct solutions by probabilisti-
cally selecting paths, where the probability is influenced by pheromone intensity and
heuristic information. The probability that search agent i (representing an ant) moves
from position j to position k, given as nodes in a search graph, is defined as:

pi
jk =

(τjk)α ⋅ (ηjk)β

∑l∈N i
j
(τjl)α ⋅ (ηjl)β

, (9)

where τjk is the pheromone level on edge ( j, k), ηjk is the heuristic desirability of edge
( j, k), e.g., inverse of distance, α controls the influence of pheromone, β controls the
influence of the heuristic, and N i

j is the set of allowed next nodes. After all ants construct
their solutions, the pheromone levels τjk are updated to (1 − ρ) ⋅ τjk + ∆τjk, where ρ is
the evaporation rate of the pheromone and ∆τjk is the amount of pheromone deposited.
Symbiotic Organisms Search (SOS) [17] SOS mimics symbiotic relationships ob-
served in nature through three distinct phases: mutualism (both organisms benefit),
commensalism (one benefits, the other is unaffected), and parasitism (one benefits at
the expense of another). It updates search agents (organisms) by simulating these in-
teractions, promoting exploration of the search space and reducing the risk of prema-
ture convergence. It is a parameter-free algorithm, which simplifies its implementation
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across a range of optimization problems. The position update rules for each interaction
phase are as follows:

Mutualism: xi(t + 1) = xi(t) + rand(0, 1) ⋅ (X∗ − xi(t)) + BF1 ⋅ (x j(t) − xi(t)) , (10)

Commensalism: xi(t + 1) = xi(t) + rand(−1, 1) ⋅ (X∗ − x j(t)) , (11)

Parasitism: if f (xi(t)) > f (x j(t)) then x j(t + 1) = xi(t) , (12)

where xi and x j are two randomly selected organisms, X∗ is the current best solution,
BF1 is a randomly chosen benefit factor, rand(a,b) generates a random number uni-
formly in the range [a,b], and f (⋅) denotes the fitness function.

4.2 Niching, Classification, and Discovery

A key challenge in multi-objective optimization tasks is maintaining diversity of so-
lutions to avoid premature convergence to suboptimal solutions. Niching techniques
address this by promoting the exploration of multiple optima, supporting identification
of multiple high-quality solutions in a single run. One fundamental niching technique
is based on sharing functions, which modify fitness values to reduce the dominance
of similar solutions. This prevents overcrowding in highly competitive regions of the
search space and encourages the discovery of alternative solutions.

The sharing function S (d) modifies fitness to maintain population diversity:

S (d) =
⎧⎪⎪⎨⎪⎪⎩

1 − ( d
σshare
)
α

if d < σshare

0 otherwise,
(13)

where d is the distance between two solutions in the objective space, σshare is the shar-
ing radius, and α controls the rate of modification. By reducing the fitness of similar
individuals, this mechanism discourages clustering and promotes broader exploration.
The distance dij between solutions i and j is computed as dij = ∥xi − x j∥. Then, the
shared fitness f̂i of a solution i is computed as follows:

f̂i =
fi

∑i≠ j S (dij)
, (14)

where fi is the raw fitness of solution i. This adjustment ensures that solutions in densely
populated regions receive lower fitness values, thereby maintaining population diversity
and allowing the algorithm to explore multiple regions of the objective space effectively.

To enable the seamless integration of niching techniques with multi-objective meta-
heuristics, we propose a classification based on the solution update strategies. Specifi-
cally, we identify four classes of such strategies, as detailed below.

Leader-Based Update. In this class of metaheuristics, all solutions are updated based
on the leader, the current best option. Specifically, the update of a solution s is influ-
enced by the leader L selected from the Pareto front of solutions F:

L = arg max
s∈F

f̂s . (15)



10 Hootan Zhian, Rajkumar Buyya, and Artem Polyvyanyy

Algorithm 1: Stochastic Process Discovery
Data: Event log L, population size n, maximum number of iterations iter, and metaheuristic algorithm meta
Result: A Pareto frontier F of optimal discovered SDAGs

1 F ← ∅;
2 population← InitializePopulation(n);
3 for i = 1; i ≤ iter; iter = iter + 1 do
4 for p in population do
5 p.model← ConstructSDAG(p, L);
6 p.sharedfitness← ComputeSharedFitness(p, F);
7 F ← UpdateParetoFront(p, F, L);
8 if F has changed then
9 for x ∈ F do

10 x.sharedfitness← EvaluateSharedFitness(x, F);

11 population← UpdatePopulation(population, F,meta);

12 return F

The class of metaheuristics with leader-based updates includes PSO and WO.

Selection-Based Update. In this class of optimization strategies, the next generation of
solutions is created from solutions from the current solutions [10]. The probability Ps

of selecting solution s to generate new solutions is given by:

Ps =
f̂s

∑N
k=1 f̂k

, (16)

where N is the total number of current solutions.
GA, DE, and CS are members of this class of metaheuristics.

Collaborative Influence Update. The solution update rule of metaheuristics from this
class is influenced by all solutions in the Pareto front of solutions.

ACO, GAS, and FA are members of this class of techniques.

Hybrid Update. Some algorithms combine multiple update strategies, leveraging the
strengths of different approaches to enhance performance. The SOS strategy falls into
this class, as it incorporates a leader-based update during the commensalism phase and
a collaborative influence update during the mutualism phase.

Algorithm 1 summarizes the high-level strategy for discovering optimal SDAGs using a
metaheuristic with niching based on the concept of shared fitness. The algorithm starts
by initializing an empty set of optimal solutions F (line 1). Next, the initial population of
n solutions, each given as a triplet of parameters sufficient to induce an SDAG (event log
filtering and two parameters of the Alergia grammatical inference algorithm), is gen-
erated at line 2. Subsequently, the for loop of line 3 executes iter number of times. In
each iteration, for each parameter triplet in the current population of solutions, we con-
struct the corresponding SDAG p.model (line 5), compute the shared fitness of p.model
using Eq. (14) (line 6), and update the Pareto front of solutions using model p (line 7).
Moreover, if model p changes the Pareto front (line 8), all the shared fitness values of
the models on the Pareto front get updated in the for loop of line 9. Finally, the current
population of models gets updated using the model on the Pareto front F, the current
population of models, and the metaheuristic rules meta (line 11). After the population
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of models and, thus, the Pareto front of optimal models gets updated iter times, the
resulting optimal models are returned on line 12.

5 Evaluation

We implemented all nine metaheuristics reviewed in Section 4.1, along with the GASPD
and DFvM discovery algorithms.2 These algorithms were evaluated using twelve real-
world event logs from the IEEE Task Force on Process Mining (https://www.tf-pm.org/
resources/logs). The selected event logs exhibit diverse characteristics, such as varying
numbers of actions and traces, different trace lengths, and differing maximum model
sizes discovered by DFvM [21]. This diversity enables a comprehensive assessment of
the algorithms’ robustness across various scenarios. Table 1 summarizes the character-
istics of the twelve event logs. All experiments were conducted on a system equipped
with a 13th Gen Intel® CoreTM i7-1355U processor (1.70GHz) and 16.0GB of RAM.

Table 1. Characteristics of the event logs used in our evaluation.

Event log Actions Traces Max. DFvM sizeTotal Distinct Max. len. Avg. len.

Sepsis Cases 16 1,050 846 185 14.48 155
BPIC 20123 24 13,087 4,366 175 20.03 176
BPIC 2013 Incidents4 4 7,554 1,511 123 8.67 22
Hospital Billing5 18 100,000 1,020 217 4.51 177
Request For Payment6 19 6,886 89 20 5.34 77
Prepaid Travel Costs7 29 18,246 1,085 21 5.13 226
International Declarations8 34 6,449 753 27 11.18 245
PDC 2022 Base Logs9 12 1,000 293 27 5.39 83
PDC 2022 Ground Truth Logs10 10 1,000 229 32 5.52 62
PDC 2024 Base Logs11 16 1,000 892 35 12.21 128
PDC 2024 Ground Truth Logs12 17 1,000 885 42 12.24 118
PDC 2024 Test Logs13 20 1,000 902 39 12.29 171

We explored two scenarios: an unconstrained environment allowing free exploration
and a constrained environment with a 60-second time limit and a reduced Pareto front
of up to 20 models, simulating real-world computational constraints. Models exceeding
a size of 150 were discarded during construction, as most models constructed from the
event logs listed in Table 1 using the baseline DFvM algorithm are smaller than this
size; refer to the last column in the table for the maximum sizes of models constructed

2 https://github.com/HzhianUnimelb/BPM ProcessDiscovery Optimization
3 https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
4 https://doi.org/10.4121/uuid:500573e6-accc-4b0c-9576-aa5468b10cee
5 https://doi.org/10.4121/uuid:76c46b83-c930-4798-a1c9-4be94dfeb741
6 https://doi.org/10.4121/uuid:895b26fb-6f25-46eb-9e48-0dca26fcd030
7 https://doi.org/10.4121/uuid:5d2fe5e1-f91f-4a3b-ad9b-9e4126870165
8 https://doi.org/10.4121/uuid:2bbf8f6a-fc50-48eb-aa9e-c4ea5ef7e8c5
9 https://doi.org/10.4121/21261402.v1 (pdc2022 020111.xes)

10 https://doi.org/10.4121/21261402.v1 (pdc2022 020111.xes)
11 https://doi.org/10.4121/3cfcdbb7-c909-4f60-8bec-62c780598047.v1 (pdc2024 100111.xes)
12 https://doi.org/10.4121/3cfcdbb7-c909-4f60-8bec-62c780598047.v1 (pdc2024 020111.xes)
13 https://doi.org/10.4121/3cfcdbb7-c909-4f60-8bec-62c780598047.v1 (pdc2024 000110.xes)

https://www.tf-pm.org/resources/logs
https://www.tf-pm.org/resources/logs
https://github.com/HzhianUnimelb/BPM_ProcessDiscovery_Optimization
https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
https://doi.org/10.4121/uuid:500573e6-accc-4b0c-9576-aa5468b10cee
https://doi.org/10.4121/uuid:76c46b83-c930-4798-a1c9-4be94dfeb741
https://doi.org/10.4121/uuid:895b26fb-6f25-46eb-9e48-0dca26fcd030
https://doi.org/10.4121/uuid:5d2fe5e1-f91f-4a3b-ad9b-9e4126870165
https://doi.org/10.4121/uuid:2bbf8f6a-fc50-48eb-aa9e-c4ea5ef7e8c5
https://doi.org/10.4121/21261402.v1
https://doi.org/10.4121/21261402.v1
https://doi.org/10.4121/3cfcdbb7-c909-4f60-8bec-62c780598047.v1
https://doi.org/10.4121/3cfcdbb7-c909-4f60-8bec-62c780598047.v1
https://doi.org/10.4121/3cfcdbb7-c909-4f60-8bec-62c780598047.v1
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Fig. 3. Pareto front dominance count for fixed iterations optimization (50 iterations).
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Fig. 4. Pareto front diversity (DCI) for fixed iterations optimization (50 iterations).

using DFvM . Both scenarios used consistent parameters—an initial population size of
50 and a maximum of 50 iterations—to ensure fair comparisons. We then compare the
best-performing metaheuristic-based approach with DFvM .

Performance is evaluated using two metrics: dominance count and Diversity Com-
parison Indicator (DCI) [22]. Dominance count measures how many solutions from
one algorithm dominate solutions from the other algorithms in the global Pareto front
of all solutions from all algorithms, while DCI quantifies solution diversity by analyzing
their distribution in the objective space. To compare the performance of the discovery
techniques, we use the Friedman test [19], a non-parametric statistical test suitable for
ranking-based comparisons. We report the mean ranks of the algorithms and apply the
critical difference to determine statistically significant differences, enabling a robust
evaluation of algorithm effectiveness.

Table 2. Runtime comparison (in seconds) across datasets for fixed iterations optimization (50);
the best runtime per dataset is shown in bold, and the second-best is underlined.

Event log GASPD CS FA SOS GSA WO ACO DE PSO GA

Sepsis Cases 110 25 61 40 112 36 27 31 53 52
Hospital Billing 125 34 50 38 118 43 35 23 46 75
Request For Payment 33 104 54 93 102 137 53 34 344 102
BPIC 2012 384 313 351 742 435 365 254 341 323 384
BPIC 2013 Incidents 84 47 70 154 144 33 45 70 84 96
Prepaid Travel Costs 21 12 16 16 13 20 17 13 16 25
International Declarations 84 64 88 96 119 82 72 81 88 96
PDC 2022 Base Logs 73 27 95 101 128 45 25 95 49 74
PDC 2022 Ground Truth Logs 80 53 73 90 77 69 61 82 69 82
PDC 2024 Base Logs 75 43 83 140 154 74 56 94 77 65
PDC 2024 Ground Truth Logs 70 43 53 80 57 49 51 82 59 62
PDC 2024 Test Logs 89 63 36 104 103 61 34 75 57 75
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Fig. 5. Size and entropic relevance of SDAGs discovered using the DE metaheuristics and DFGs
discovered using DFvM for fixed iterations optimization (50 iterations); smaller sizes and en-
tropic relevance values signify better models.

Figures 3 and 4 report the results of the Friedman tests for dominance counts and
diversity analysis, respectively. DE outperforms all other metaheuristics, achieving the
highest median and lowest rank14, both for dominance count and DCI. In contrast,
GASPD is the least effective, with the lowest median and the highest mean rank across
all the event logs. Similarly, DE demonstrates superior performance for the diversity of
the discovered SDAGs, while GASPD constructs the least diverse models.

Table 2 reports the runtimes of discovering optimal SDAGs using different meta-
heuristics. It is interesting to see that the DE-based discovery is not characterized by
prolonged runtimes, often constructing optimal models in a time that is comparable to
the runtimes of the other metaheuristics.

To compare the models constructed using the DE metaheuristics and DFvM , in
Fig. 5, we show global Pareto fronts of the models for six event logs. To obtain a Pareto
front of the DFvM models for a given event log, we constructed 100 DFGs by varying
the trace filtering threshold from 0.01 to 1 in increments of 0.01. On average, construct-
ing a DFvM Pareto front took 29.42 seconds, with the fastest case being 9 seconds for
the Request For Payment log and the slowest 78 seconds for BPIC 2012. From the vi-
sual analysis of the Pareto fronts, one can clearly conclude that there are more diverse,
optimal DE models than DFvM models. On average, across the twelve event logs, the
share of models on the global Pareto front (dominance count) of the DE and DFvM

14 Note that lower rank is better, signifying superior performance.
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Fig. 6. Pareto front dominance count for limited execution time (60 seconds) and Pareto front size
(at most 20 models).
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Fig. 7. Pareto front diversity (DCI) for limited execution time (60 seconds) and Pareto front size
(at most 20 models).

models is 66.67% and 33.33%, respectively, confirming that there are more optimal
DE models. Furthermore, for all the evaluated event logs, the diversity of the DE mod-
els, measured as DCI, is 44.58%, while the diversity of the DFvM models is 25.20%,
suggesting the DE models are substantially more diverse in their quality characteristics.

Figures 6 and 7 summarize the analysis of Pareto front dominance counts and diver-
sity for the limited 60-second execution time scenario, respectively, where at most 20 of
the fittest models are retained in the population of each generation. Again, the DE meta-
heuristic demonstrates superior performance compared to other techniques, producing
a greater number of models on the global Pareto front while maintaining diversity.

Figure 8 shows global Pareto fronts of the DE and DFvM models for six event logs,
when the DE-based optimization was constrained to run for 60 seconds, preserving at
most 20 Pareto optimal models in each generation. For this constrained scenario, across
the twelve event logs, the share of models on the global Pareto front (dominance count)
of the DE and DFvM models is 68.17% and 31.83%, respectively. Again, this suggests
that more optimal DE models have been discovered. Furthermore, the diversity of the
DE models, measured as DCI, is 42.29%, while the diversity of the DFvM models is
23.98%. Again, the DE models are substantially more diverse than the DFvM models.

6 Related Work

Evolutionary approaches to process discovery were initiated by the work of van der
Aalst et al. [4], who applied genetic algorithms to extract process models while ad-
dressing the challenges of noise in event logs. This line of research was further advanced
by techniques such as Evolutionary Tree Miner [11, 12] and Evolutionary Miner [24].
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Fig. 8. Size and entropic relevance of SDAGs discovered using the DE metaheuristics and DFGs
discovered using DFvM for limited execution time (60 seconds) and Pareto front size (at most 20
models); smaller sizes and entropic relevance values signify better models.

Vázquez-Barreiros et al. [28] introduced ProDiGen, a genetic algorithm-based method
that integrates three key quality dimensions—precision, recall, and simplicity—into the
selection of optimal process models. Unlike earlier approaches that rely on weighted fit-
ness functions, ProDiGen adopts a multi-objective perspective, directly prioritizing the
competing objectives in the model evaluation process.

Fantinato et al. [18] introduced the X-Processes method for process discovery, which
is also based on genetic algorithms. Their approach employs a fitness function that in-
tegrates four key metrics commonly used to assess process model quality in process
mining: recall, precision, generalization, and simplicity. Building on this foundation,
Alkhammash et al. [6] demonstrate the effectiveness of genetic algorithms in optimiz-
ing grammatical inference for discovering high-quality stochastic process models. Mo-
tivated by these findings, the present study conducts a comprehensive evaluation of
established metaheuristics to identify the approach best suited for the effective and effi-
cient discovery of diverse, high-quality stochastic process models.

Genetic process discovery techniques typically begin with an initial population of
process models, which are iteratively modified through crossover and random muta-
tions. At each iteration, models are evaluated based on predefined quality measures.
While these evolutionary approaches are robust against noise and incomplete data, they
often suffer from slow convergence and may fail to consistently produce high-quality
models due to limitations in the evaluation criteria. In contrast, Augusto et al. [9] in-
troduce an alternative strategy by integrating single-solution-based metaheuristics, such
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as iterative local search, tabu search, and simulated annealing, with Split Miner [8] to
enhance model accuracy. However, their approach is tailored to non-stochastic settings,
where the goal is to reproduce observed traces rather than estimate the likelihood of
trace generation by the system.

7 Conclusion

In this study, we implemented and evaluated nine metaheuristics as alternatives to the
Genetic Algorithm used in the GASPD stochastic process discovery algorithms, en-
hanced by niching techniques to ensure the diversity of the discovered models. These
metaheuristics support the exploration of multiple promising regions in the search space,
avoiding premature convergence and yielding a diverse set of high-quality process mod-
els. Our empirical evaluation over twelve real-world event logs demonstrates that Dif-
ferential Evolution (DE) consistently outperforms other metaheuristics, including the
GASPD algorithm. We refer to this DE-based discovery approach as ADESPD. No-
tably, ADESPD often surpasses DFvM , a state-of-the-art algorithm for discovering
DFGs, constructing smaller, more accurate, and diverse process models, thus highlight-
ing DE’s effectiveness in stochastic process discovery. Our evaluation also confirms that
ADESPD constructs superior models within practical timeframes, comparable with the
runtimes of DFvM . We also proposed a classification of metaheuristics based on vari-
ous solution update strategies to enhance the application of niching techniques to ensure
solution diversity in multi-objective optimization. Future research could focus on refin-
ing niching techniques for process discovery and exploring further enhancements to DE
and other metaheuristics for more robust process discovery algorithms.
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[26] Sareni, B., Krähenbühl, L.: Fitness sharing and niching methods revisited. IEEE Trans.
Evol. Comput. 2(3), 97–106 (1998)

[27] Storn, R., Price, K.: Differential evolution - A simple and efficient adaptive scheme for
global optimization over continuous spaces. Tech. Rep. TR-95-012, International Computer
Science Institute, 1947 Center Street, Berkeley (1995)

[28] Vázquez-Barreiros, B., Mucientes, M., Lama, M.: A genetic algorithm for process discovery
guided by completeness, precision and simplicity. In: BPM, LNCS, vol. 8659, pp. 118–133
(2014)

[29] Winter, G., Periaux, J., Galan, M., Cuesta, P.: Genetic Algorithms in Engineering and Com-
puter Science (1996)

[30] Yang, X.S.: Nature-Inspired Metaheuristic Algorithms (2008)
[31] Yang, X.S., Deb, S.: Cuckoo search via Lévy flights. In: World Congress on Nature &
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